
TAU Performance System training course

Practical Sheet 1: Installing and Configuring TAU on a Linux system

1.1) Installing TAU

To begin, download and unpack the latest version of TAU to the home directory:

 wget http://tau.uoregon.edu/tau.tgz
 tar xvzf tau.tgz

Then go into the base TAU directory and download and unpack the Program Database
Toolkit (PDT) tar

 cd tau-2.27
 wget http://tau.uoregon.edu/pdt.tgz
 tar xvzf pdt.tgz

From the resulting PDT directory, configure and make PDT

 cd pdtoolkit-3.25
 ./configure
 make && make install

This creates a set of binaries, libraries and include files in the x86_64 directory. These form
the PDT, which TAU uses to instrument source code.

Next, return to the base TAU directory. To configure TAU’s installation, run the configure
script

./configure -pdt=/home/tautraining/tau-2.27/pdtoolkit-
3.25 -bfd=download –mpi

The above will configure TAU with PDT and MPI support, and download and install the
binutils (BFD) library. This is a basic configuration. Additional configuration options are
available such as:

-openmp for OpenMP threads
-papi=<path to papi install> for including Performance API library
-shmem for the TAU SHMEM library wrapper
-cuda=<path to cuda dir> for OpenCL and CUDA profiling

For the purpose of the tutorial and the following practical sheets, the above PDT, binutilis
and MPI configuration will be used. Once the configuration is complete, type

make install

This will place the installed TAU objects in the x86_64 directory. Importantly, this will
include a file called Makefile.tau-gnu-mpi-pdt. This file needs to be set as an
environment variable, TAU_MAKEFILE, so that TAU chooses this configuration of TAU.
There are also some other environment variables related to TAU that need to be set. This is
best achieved by putting the appropriate commands into the ~/.bashrc file:

export TAU_LIB=/home/tautraining/tau-2.27/x86_64/lib
export TAU_DIR=/home/tautraining/tau-2.27
export TAU=/home/tautraining/tau-2.27/x86_64/lib
export TAU_BIN=/home/tautraining/tau-2.27/x86_64/bin
export TAU_ARCH=x86_64
export TAU_MAKEFILE=“/home/tautraining/tau-
2.27/x86_64/lib/Makefile.tau-gnu-mpi-pdt”
export PATH=/home/tautraining/tau-2.27/x86_64/bin:$PATH
export PATH=/home/tautraining/tau-2.27/x86_64/lib:$PATH

These commands will put TAU’s compiler wrappers into the path, so that you can use them
as you would standard compilers. For example, tau_cc.sh launches the C compiler
wrapper, and tau_f90.sh launches the F90 compiler wrapper. Also available as
commands include paraprof, TAU’s results viewer, and tau_exec, which is used to
execute programs (more on these commands later).

1.2) Configuring TAU

Instrumenting with TAU takes 3 different forms:

1. library interposition with tau_exec
2. compiler directives
3. source transformation with PDT.

The table below summarises their features.

Method 1 is utilised by simply calling

tau_exec executable
or

mpirun –n x tau_exec mpi_executable

Methods 2 and 3 require the use of alternative C/C++/Fortran compilers built with TAU.
These are tau_cc.sh, tau_cxx.sh, and tau_f90/tau_f77.sh:

tau_cc.sh my_code –o my_program.x
then

./my_program.x
or

mpirun –n x my_program.x
or

mpirun –n x tau_exec my_program.x

As you can see, methods 2 and 3 use the same compiler commands. Thus, further
customisation of TAU is required to distinguish between the two. This is achieved by setting
a further environment variable, TAU_OPTIONS

export TAU_OPTIONS=”-optPDTInst -optRevert -optVerbose”

In which –optPDTInst instructs TAU to use Source-based PDT instrumentation,
-optRevert instructs TAU to revert to compiler-based instrumentation if PDT fails to
parse a source code file, -optVerbose gives more verbose output, which is useful for
debugging.

1.2.1) Further configuration options

There is a flag to set the C++ parser in PDT, ‘-optDefaultParser’. This is important
because the default C++ parser, cxxparse, does not support the C++11 standard. Setting
the C++ parser to cxxparse4101 should set the parser to v4.10.1 with full C++11 support,
but the flag is overwritten in the compiler wrapper tau_cxx.sh:

TAUCOMPILER_OPTIONS="-optDefaultParser=cxxparse
$TAUCOMPILER_OPTIONS"

Editing the above line in
/home/tautraining/tau2.27/x86_64/bin/tau_cxx.sh to read

TAUCOMPILER_OPTIONS="-optDefaultParser=cxxparse4101
$TAUCOMPILER_OPTIONS"

Sets the default parser to v4.10.1. It is also useful to edit cxxparse4101 so that it is more
verbose, and therefore prints full commands for its individual parts. To edit this, change the
flag in cxxparse4101 in

/home/tautraining/tau-2.27/pdtoolkit-3.25/x86_64/bin

to read VERBOSE=on to VERBOSE=off.

The above set of changes can also be made to the tau_cc.sh C compiler wrapper,
replacing cparse with cparse4101.
TAU_OPTIONS can also include –optTauSelectFile=<filename>. <filename>
has a list of source files, loops, phases etc. to include, or exclude when using
instrumentation. Note, if no excludes are present, only things ‘included’ are instrumented.
For example:

BEGIN_FILE_INCLUDE_LIST
<Sourcefile name>
END_FILE_INCLUDE_LIST

Instruments only the source files listed in between the begin and end statements. A similar
syntax exists with EXCLUDE instead of INCLUDE. The next level of selective
instrumentation is:

BEGIN_INCLUDE_LIST
<full function name>
END_INCLUDE_LIST

Where the full function name includes the return type and arguments to the function, not
just the name. Going further still, we have

BEGIN_INSTRUMENT_SECTION
loops routine=“#”
END_INSTRUMENT_SECTION

In which # is the wildcard character, which in this case, tells PDT to instrument all for and
while loops in all source files. Note - # cannot appear at the beginning of line as this is a
comment. # at beginning of line must therefore be quoted. See
https://www.cs.uoregon.edu/research/tau/docs/newguide/bk01ch01s03.html for more
details on these selective instrumentation options. See Practical Sheet 3 for a look at how to
use selective instrumentation.

